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Abstract

A global stability analysis of mirror modes in the magnetosheath is presented.

The analysis is based upon the kinetic-MHD formulation which includes rele-

vant kinetic e�ects such as Landau resonance and gradient drift e�ects related

to inhomogeneities in the background density, temperature, pressure and its

anisotropy, magnetic �eld, and plasma 
ow velocity. Pressure anisotropy pro-

vides the free energy for the global mirror mode. The local theory of mirror

modes predicts purely growing modes con�ned in the unstable magnetosheath

region; however, the nonlocal theory that includes the e�ects of gradients and

plasma 
ow predicts modes with real frequencies which propagate with the


ow from the magnetosheath toward the magnetopause boundary. The real

frequency is on the order of a combination of the diamagnetic drift frequency

and the Doppler shift frequency associated with plasma 
ow. The diamag-

netic drift frequency provides a wave phase velocity in the direction of the

magnetopause so that wave energy accumulates against the magnetopause

boundary, and the amplitude is skewed in that direction. On the other hand,

plasma 
ow also gives rise to a real phase velocity, but the phase velocity is

smaller than the 
ow velocity. As a result, the wave amplitude is increased

in the wake of the plasma 
ow and piles up against the bow shock boundary.
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I. INTRODUCTION

Recently much attention has been given to the identi�cation of wave modes in the mag-

netosheath and, in particular, near the magnetopause [1{10]. Such e�orts are of interest

primarily because the identi�ed modes may grow to substantial amplitudes and can cause

signi�cant change in plasma pro�les and pressure anisotropy. For example, it is thought that

ion-cyclotron waves control the degree of pressure anisotropy in the magnetosheath [11].

Moreover, low frequency MHD waves such as mirror modes excited in the magnetosheath

or fast compressional Alfv�en waves originating from the bow shock can propagate to the

magnetopause and lead to signi�cant plasma transport. Transport at the magnetopause

due to low frequency MHD wave turbulence can be very e�cient because magnetic �eld

and density gradients at the magnetopause e�ciently couple large scale wave energy into

small scale kinetic Alfv�en waves with perpendicular wavelength on the order of the gyrora-

dius [12{15]. Using quasilinear theory we have shown that these waves can lead to e�cient

particle transport across the magnetic �eld for both northward and southward IMF. More-

over, for southward IMF, we have shown that kinetic Alfv�en waves can propagate to the

location because the Landau damping is suppressed by magnetic gradient and curvature

drifts [14]. As a consequence, magnetic islands can form and for a typical spectrum of low

frequency MHD waves, there will be multiple overlapping islands in the particle phase space

which can lead to massive particle transport.

The mirror modes destabilized in the magnetosheath are of substantial interest because

they can couple a signi�cant amount of wave energy from the magnetosheath to waves

at the magnetopause. The mirror modes are unstable and can grow to large amplitudes

because the magnetosheath is characterized by a large pressure anisotropy [16, 17]. Based

on local mirror mode theory the mirror modes is purely growing and has no real frequency

so as a consequence they would be con�ned in the magnetosheath and can not propagate to

the magnetopause. In this work we shall study the nonlocal e�ects of realistic background

gradients and plasma 
ow and demonstrate that the mode frequency is actually complex with
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a substantial real component due to particle diamagnetic drift and Doppler shift associated

with plasma 
ow. With a substantial real frequency, these modes can propagate to the

magnetopause and e�ciently mode convert into kinetic Alfv�en waves which may play an

important role in transport processes at the magnetopause.

Large pressure anisotropy develops in the magnetosheath because as plasma crosses the

bow shock, the magnetic �eld increases and the 
ow velocity perpendicular to the magnetic

�eld is converted into gyromotion yielding a large perpendicular plasma temperature. Mo-

tion along the magnetic �eld is not readily converted into thermal energy so that a large

anisotropy develops with �? > �k. In the magnetosheath the kinetic pressure dominates the

relatively weak magnetic �eld so that typically � > 1. For �?=�k > (1 + 1=�?) the plasma

is unstable to the well known mirror mode. Toward the magnetopause, the 
ow slows down

and the magnetic �eld further increases while the plasma pressure decreases and becomes

more isotropic. The plasma � falls to a more typical magnetospheric value much less than

1 which suppresses the mirror mode instability.

Kinetic e�ects on mirror modes in the magnetosheath have been extensively studied

using Vlasov theory based upon a homogeneous background [3, 9, 11, 18{20]. While these

calculations provide very useful information about local threshold conditions, they do not

account for kinetic e�ects that involve background gradients and boundary conditions. On

the other hand, MHD wave analysis e�ectively deals with complicated boundary conditions

and global gradients, but fails to account for important kinetic e�ects.

While one- and two-dimensional hybrid simulations [10,21] have the advantage of simu-

lating many ion kinetic e�ects, it is di�cult to prescribe and maintain a realistic steady state

magnetic �eld geometry with appropriate boundary conditions. We employ the kinetic-MHD

approach which is an attempt to incorporate the most important ion kinetic e�ects into the

MHD formalism [22, 23]. The gyrokinetic equation, which is essentially the gyroaveraged

Vlasov equation, is the cornerstone of the kinetic part of the model for this application.

Moments of the gyrokinetic equation are taken and provide a modi�ed momentum equation

and Ohm's law. This approach retains the important kinetic e�ects of Landau damping and
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diamagnetic drift as well as the physics associated with the ion magnetic gradient and cur-

vature drifts. Moreover, it is straightforward to generalize this model to account for realistic

two or three dimensional equilibrium pro�les.

The organization of this paper is as follows. We shall brie
y review the mirror mode

and point out the important consequences introduced by (a) background gradients in the

equilibrium and (b) kinetic e�ects. We present the kinetic-MHD model for the mirror mode

which includes these e�ects. Then, we solve for the global mirror eigenmodes using a one-

dimensional equilibrium based upon typical observations and interpret the results. Then

we will present a discussion of our results in relation to wave observations and simulation

results. Finally, we give a summary.

II. BACKGROUND GRADIENT AND KINETIC EFFECTS ON MIRROR

MODES

Without kinetic e�ects, low-frequency (! � kkvA; kkcs, where kk is the parallel wave

number, vA is the Alfv�en speed, and cs is the sound speed) compressional magnetic �eld


uctuations in a plasma with 
ow velocity V0 may be described by the MHD equation

 
@

@t
+V0 � r

!2

B � �B = B � r
�
�

B2
B � rB � �B

�
+r2

?
(�MHDB � �B) (1)

where the �rehose and mirror instability parameters are respectively

� = 1 + (�? � �k)=2 (2)

and

�MHD = 1 + �?(1� �?=�k) (3)

for bi-Maxwellian plasmas. The uniform plasma dispersion relation for waves without back-

ground 
ow is !2 = �k2
k
v2A + �MHDk

2
?
v2A which reduces in the isotropic limit (� = � = 1) to

the well known compressional Alfv�en wave. In a plasma with �? > �k � 1, �MHD < 0 can

lead to the well known purely growing mirror instability.
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Modi�cations to the simplistic uniform plasma MHD description of the compressional

wave can be signi�cant. In the magnetosheath and near the magnetopause it is important

to consider the e�ects of gradients in the equilibrium as well as kinetic e�ects. The param-

eter, �MHD, which indicates regions of local instability when negative, has a pro�le which

changes from positive in the solar wind (relatively isotropic pressure) to negative in the mag-

netosheath (due to large pressure anisotropy) to positive in the magnetosphere (low �, less

anisotropy). As a consequence, (1) describes a purely growing eigenmode localized in the

region of instability. In the presence of uniform background plasma 
ow, the mirror mode

is purely growing in the plasma frame and should be convected with the 
ow. However, if

the background plasma 
ow is nonuniform, mirror modes can acquire a �nite phase velocity

due to Doppler shift. The wave phase velocity roughly equals an average 
ow velocity in

the unstable region. As the plasma 
ow slows down toward the magnetopause, wave energy

pile up depends on the wave phase velocity with respect to the plasma 
ow velocity.

If kinetic e�ects are included in Eq. (1), kinetic contributions arise which modify the

term proportional to �MHD so that �MHD must be replaced by an appropriate kinetic � which

contains e�ects of diamagnetic drift, wave-particle resonances and �nite Larmor radii. In the

low frequency limit (! � kkvthk), the kinetic � reduces to �MHD. It has already been shown

that kinetic e�ects strongly a�ect the MHD picture of the mirror instability. If (! � kkvthk),

then wave particle resonance is important. Hasegawa [24] �rst provided a description of

kinetic e�ects on the mirror mode. More recently extensive studies of local mirror mode

theories including kinetic e�ects have been compiled [1, 3, 9, 11, 18{20]. Southwood [25]

provided an excellent physical picture of the kinetic e�ects on the instability and relates the

instability to resonant particles with zero phase velocity. An important feature of the kinetic

dispersion relation is that for an anisotropic plasma, in addition to the weakly damped fast

magnetosonic wave found in the limit ! � kkvthk, the mirror mode is found with ! � kkvthk.

For low frequencies (! � kkvthk), the kinetic mirror mode is reasonably approximated by

the MHD description for the threshold condition. However, when ! � kkvthk, the kinetic

mirror mode growth rates are signi�cantly reduced from the prediction of MHD theory.
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Other kinetic e�ects not described by uniform plasma Vlasov theory also arise where

pressure and density gradients are important. Hasegawa �rst described these e�ects as

the drift-mirror mode [24], but these e�ects were thought to be unimportant because pres-

sure and density gradients in the magnetosheath are generally small; however, we shall

show that large localized gradients at the magnetopause can a�ect the global structure and

provide a real frequency to the mirror mode. The gradients enter into the kinetic descrip-

tion through the diamagnetic drift. At the magnetopause, the diamagnetic drift frequency,

!� � k?vthi�i=LMP (LMP is the gradient scale at the magnetopause and �i is the ion gy-

roradius) can be signi�cant because, for typical magnetopause parameters, !� � kkvthi and

wave-particle interaction is strongly modi�ed.

III. KINETIC-MHD EIGENMODE EQUATION FOR MIRROR MODES

An appropriate description of the mirror mode in the magnetosheath and near the mag-

netopause should attempt to account for the e�ects outlined in the last section. In particular,

the model should contain the global pro�le e�ects which arise for inhomogeneous 
ow veloc-

ity, density, pressure, temperature, and magnetic �eld. Moreover, the model should contain

important kinetic e�ects associated with the wave-particle interaction and diamagnetic drift.

The gyrokinetic-MHD model, which retains all of these e�ects is appropriate because the

smallest background scale (the magnetopause) is typically the order of 10 �i and thus sat-

is�es the gyrokinetic approximation. To focus on the e�ects described above, we take for

simplicity a one-dimensional equilibrium in the x direction which is taken to be normal to the

magnetopause. While we expect that the two-dimensional and three-dimensional nature of

the magnetopause can be important, the one-dimensional equilibrium gives us an abundance

of new insight on the mirror mode. All equilibrium quantities will be functions of x only.

For simplicity, we take the magnetic �eld and velocity to be B0(x)ẑ and V0(x)x̂ respectively.

We neglect drifts due to magnetic �eld gradients and curvature in the resonant wave-particle

interaction (which at most will shift the real frequency of the modes by a negligible amount).
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Coupling to transverse magnetic 
uctuations is ignored. If ! < kkcs; kkvA this assumption is

reasonable, but we expect that there will be localized coupling near the location where the

phase velocity of the wave approaches vA or cs leading to mode conversion to kinetic Alfv�en

waves or damping from the sound continuum.

The global kinetic-MHD equation describing the compressional magnetic �eld is given

by

 
@

@t
+V0 � r

!2

B � �B = B � r
�
�

B2
B � rB � �B

�
+r2

?
(�B � �B) (4)

where

�B � �B � �MHDB � �B+ �p̂?; (5)

which arise through the nonadiabatic pressure response,

�p̂? = m

Z
d3v(v? �V0)

2g=2: (6)

The nonadiabatic particle distribution, g, evolves according to the gyrokinetic equation

which is given by

(! � ivk � r� iV0 � r)g = � q

m

@F

@E

�
1� !�

!

�
!v?

k?
J1(k?v?=
)

B � �B
B

(7)

where E = v2=2, 
 is the cyclotron frequency, and !� = B � k? � rF=(B
@F=@E). It

is implicitly understood that k? and !� are operators [26]. In Eq.(7) we have dropped

terms related to magnetic gradient and curvature drifts. In deriving Eq. (4) we have also

dropped terms which couple to the transverse magnetic �eld through the pressure gradient

and magnetic �eld curvature. However, Eq. (4) contains the essential kinetic e�ects required

to replicate the well known drift mirror mode dispersion relation [24]. Because k?�i < 1

we may formally expand the Bessel function to retain nonlocal e�ects in Eq. (7). We solve

the gyrokinetic equation using an expansion equivalent to a WKB approximation in the x̂

direction. We verify the validity of that approximation a posteriori. This approximation

allows us to replace V0 � rg by gV0 � r�Bk=�Bk. From Eq. (6) we obtain
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�p̂ = ��?T?

Tk

h
(� � �(1)

�
)Z(�)2I3=� � �(2)

�
Z(�)2I5=�+

�(3)
�
�(1 + �Z(�))2I3=�

i
B � �B (8)

� =
(! � iV0 � r)p

2kkvthk
(9)

�(1)
�
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b� k?vth?p

2kkvthk
�i
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n

+
1

2

rTk
Tk

� rT?
T?

!
(10)

�(2)
�

=
b� k?vth?p

2kkvthk
�i

�rT?
T?

�
(11)

�(3)
�

=
b� k?vthkp

2kkvthk
�i

 
rTk
Tk

!
(12)

where � = k2
?
�2i =2. The integral operators, I3;I5 are de�ned in the Appendix and involve

integrals over Bessel's functions. For small k?�i, 2I3=� � 1 and 2I5=� � 3.

Boundary conditions at the bow shock and magnetopause are critical in determining

the structure of the modes. Because the group velocity of the modes that we consider

are far less than the 
ow velocity in the solar wind, no wave information can be carried

across the bow shock. This property is manifest in a singularity at the location where

�MHD = (V0=vA)
2 = M2

A. At that location, the group velocity of compressional waves

propagating against the 
ow approaches zero. A careful expansion of the MHD equations

near this point indicates that the solution can consist of two Frobenius solutions, one of

which is a power series and the other dominated by a logarithmic singularity. The behavior

of the solutions is very similar to the behavior of MHD solutions near the well known �eld

line resonance [27]. In this case, however, we choose the coe�cient of the logarithmic solution

to vanish because there is no physical mechanism which can provide the buildup of energy

at the boundary. The remaining solution behaves like c(1+�2x+ :::) where � = !=rV0 with

� � 1 for a sharp boundary. In essence, this means that d�Bk=dx � 0 near the boundary

which can be interpreted as a re
ecting boundary condition. The amplitude of the wave
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should reduce to zero in a small boundary layer near the bow shock when appropriate kinetic

e�ects and coupling are include. We take the approximation d�Bk=dx � �2 near the bow

shock in all of our results. On the magnetospheric side of the magnetopause we take the

boundary condition that the solution connects to the appropriate exponentially decaying

Eikonal solution which we obtain implicitly from the di�erential equation.

IV. LOCAL THEORY

To get a better understanding of the physical meaning of the kinetic-MHD eigenmode

equation we can investigate local theory with a WKB representation, r! ik = ik?+ ikkb,

and small k?�i. The local dispersion relation becomes

(! � k �V0)
2 = �k2

k
v2A + �k2

?
v2A (13)

where

� = 1 + �?
n
1� �?=�k

h
1�

�
� � �(1)

�
Z(�)2I3=�

��(2)
�
Z(�)2I5=� + �(3)

�
�(1 + �Z(�))2I3=�

�io
(14)

From the appropriate limits it is not di�cult to see that this dispersion relation governs

propagation of compressional Alfv�en (fast magnetosonic) waves for (!�k �V0) > kkvthi and

the mirror mode for (! � k �V0) < kkvthi. Without diamagnetic drift e�ects, the frequency

and damping rate of the weakly damped magnetosonic wave are given by

!r � k �V0 � [�k2
k
+ (1 + �?)k

2
?
]1=2vA (15)

!i � �
p
2�k?vthk

�2
?

�2
k

k?

kk
exp[�( �

�k
+
(1 + �?)

�k

k2
?

k2
k

)] (16)

Even in a high-� plasma the damping is relatively weak and is negligible for k? > kk. The

diamagnetic drift modi�es the fast magnetosonic wave dispersion relation so that

(! � k �V0)
2 = �k2

k
v2A + (1 + �? �

�2
?

�k

~!�

(! � k �V0)
)k2
?
v2A (17)
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(the Landau damping terms are exponentially small in this approximation) and the magne-

tosonic wave is coupled with a drift wave characterized by the frequency, ~!� =
p
2kkvthk(�

(1)
� +

�
(2)
� + �

(3)
� ) . If the drift frequency is small, coupling between the magnetosonic wave and

drift wave is small and there is a slight modi�cation shift in the real frequency of the mode.

For low frequency limit ((! � k �V0); !� < kkvthi and (!=k?vA)
2 < !=kkvthi) the kinetic

mirror mode dispersion relation is given by

! = k �V0 + !̂� � ikkvthk

s
2

�

Tk

�?T?

 
�k2

k

k2
?

+ �MHD

!
(18)

where !̂� = (3!�p�!�n)=2 with !�n = ��ivth?b�k �rn=n and !�p = ��ivth?b�k �rP=P .

The �rst two terms in the dispersion relation are real frequency modi�cation due to Doppler

shift and diamagnetic drift respectively. The last term is the linear growth rate for the mirror

mode. Without plasma 
ow and temperature gradient, the dispersion relation reduces to

the drift mirror mode given by Hasegawa [24]. Notice that the stability criterion remains

the same as for 
uid theory, however unlike 
uid theory the growth rate scales with kk.

V. GLOBAL ANALYSIS

We solve for the global mirror modes of the outlined system of equations for a steady

state con�guration based upon a typical pass through the magnetosheath and magnetopause

[6,17]. In Fig. 1 we display typical steady state radial pro�les for northward IMF. Although

a true steady state con�guration requires at least two dimensions in order to properly model

the normal gradients in the plasma 
ow, the normal component of the bulk 
ow in the

magnetosheath is typically much smaller than the plasma and magnetic pressures and thus

does not appreciably a�ect the gradients that enter though the plasma pressure and magnetic

�eld and thus the essential MHD pro�les do satisfy a steady state solution to �rst order in

�V 2
0 =(P + B2=2). On the other hand, the Doppler e�ects may be reasonably modeled by

specifying a small normal velocity pro�le which is meant to be similar to what one would

expect from a two dimensional steady state con�guration. We introduce two spatial scales:
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FIG. 1. Model steady state con�guration for the global mode analysis for � = LMP =L� = 0:05

and MA = V0=vA0 = 0:1 where vA0 is the Alfv�en velocity at �x = 0. LMP and L� are the width of

the magnetopause and magnetosheath respectively.

L� is the scale length of the unstable region based upon �MHD < 0 which corresponds roughly

to the width of the magnetosheath (� 2� 5RE [28]), and LMP represents the gradient scale

length of the magnetopause (� 10�i). The Mach number, MA is given by the ratio V0=vA0

where vA0 is the Alfv�en velocity at �x = 0. The pro�le of V0is chosen to decrease from the bow

shock slowly to a value of zero at the magnetopause. The dimensionless radial coordinate is

�x = �x=L� . The bow shock is at �x = �0:5 and magnetopause at �x = 0:5 so that the width

of the magnetosheath is L�=�. The dimensionless frequency is �! = !L�=�vA0. For typical

parameters, this gives a frequency f = (10� 100)�! mHz. The wavevectors in the directions

perpendicular to x remain constant. They are de�ned by k and � where k2 = k2y + k2z and

� = tan�1(ky=kz). The results displayed here have k0�=L� = 5 and � = 30�. For larger

values of �, the mode becomes more stable.
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For a sharp magnetopause, there is a spectrum of purely growing modes up to an accu-

mulation point. The boundary conditions limit the growth rate. For a smooth variance in

the density, pressure and its anisotropy, and magnetic �eld, the kinetic part of � has both a

real and an imaginary part (which arises from the diamagnetic drift). The imaginary part

of � causes the eigenvalue to become complex rather than purely imaginary. If !� were

uniform the real frequency is identically !�, but for nonuniform diamagnetic e�ects, the

real frequency arises as an averaged !�. As the scale of the magnetopause is increased, the

real frequency increases. The normal bulk plasma 
ow velocity also provides a signi�cant

contribution to the real frequency which is roughly given by an averaged k �V0. (Note that

we have not included the ŷ component of 
ow which would lead to a further Doppler shift

in the real frequency.)

To illustrate these two e�ects we plot in Fig. 2 the evolution of the mode frequencies

as functions of the magnetopause gradient scale and the plasma 
ow, V0. Each curve

in this �gure corresponds to an eigenfunction with a speci�c number of nodes beginning

with the damped fundamental in ascending order. In particular, we plot the evolution of

the n = 2; 5; 8; 10; 15 modes, where n is the number of nodes in the radial wave function

(kx � (n+1)�=L�). The solid curves show the evolution of the mode frequency as a function

of � = LMP=L� with V0 = 0. The dashed curves show the evolution of modes as a function

of MA with � = 0:05. Speci�c values of � and MA are indicated by symbols described in

Table 1.

As expected, for small LMP , the modes all line up on the imaginary axis. However, as

LMP increases to more realistic values, the eigenvalues undergo excursions into the complex

plane and are characterized by a signi�cant real frequency. For substantial plasma 
ow

(MA > 0:1) the higher n modes are suppressed for n > 8. The lower n pick up a substantial

real frequency contribution from the Doppler shift with a roughly linear dependence, ! � V0.

In Fig. 3 we illustrate three radial wave structures of the n=5 eigenmode for three di�er-

ent plasma 
ow velocity and magnetopause boundary layer thickness. �x = �0:5 corresponds

to the bow shock position and �x = 0:5 the magnetopause position. The dotted and dashed
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FIG. 2. Evolution of the eigenfrequencies (�! = !L�=�vA0) of the eigenfunctions. The solid

lines correspond to evolution of the roots in � with MA = 0. The dashed lines correspond to

evolution of the roots in MA with � = 0:05. Various points on these curves are indicated by

symbols described in Table 1.

lines correspond to the real and imaginary part of the eigenfunctions of �Bk, respectively.

In all of these three cases, the real frequency is negative (same sign as diamagnetic drift

frequency). This means that if the real part of the eigenfunction leads the imaginary part,

then the mode travels to the left (phase velocity is negative). Conversely if the imaginary

part leads the real part, the wave travels to the right.

For a sharp magnetopause with zero layer width (� ! 0; V0 = 0; �! = (0; 0:73), the

eigenfunction (the top panel in Fig. 3) is a standing wave. However, for a more realistic

magnetopause gradient (� = 0:05;MA = 0; �! = (�0:1; 0:81)), the eigenfunction (the middle

panel in Fig. 3) is complex and the real and imaginary parts of the eigenfunction are not in

phase. Near the magnetopause where �MHD is small, the imaginary part of � dominates over
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Symbol � MA

� 0 0

� 0.01 0

� 0.05 0

M 0.05 0.1

N 0.05 0.2

TABLE I. Speci�c values of � and MA are indicated by these symbols in Fig. 2.

the real part and leads to a phase shift in the real and imaginary parts of the eigenfunction.

Because there is a real frequency associated with the wave, the structure slowly propagates

as it grows. The wave amplitude is largest near the magnetopause. To understand why the

eigenmode is skewed we consider the local dispersion relation in the magnetosheath region

far away from the magnetopause boundary. The mode has largest growth with kk > ky

and ! < kkVA so that �k2x � ��kk. Because diamagnetic drift e�ects are unimportant and

!r � !i, j�rj � j�ij and we have kx � �k0(1 + i�) where k0 =
q
��k2

k
=�r and � = ��i=2�r.

For unstable modes with j!=kkvthj � 1, �r < 0 and �i � �
p
�(�?T?=Tk)!r=kkvth. For

!r < 0, �i > 0 and � > 0. By inspection of the eigenfunction, kxr < 0 (the imaginary

part of the eigenfunction leads the real part) and hence the eigenfunction will have the

spatial behavior, exp(�ik0x+�k0x), which increases in amplitude in the positive x direction.

Because the real frequency is a consequence of the diamagnetic drift at the magnetopause,

this growth can be interpreted to result from coupling of the wave with the diamagnetic drift

associated with the pressure gradient. The diamagnetic drift causes the waves to drift with

phase velocity toward the magnetopause boundary. As a result, the waves pile up against

the magnetopause and the wave amplitude is enhanced. Although the diamagnetic drift is

only large near the magnetopause, its e�ects are globally transmitted throughout the entire

spatial domain leading to a slowly propagating mirror mode with real frequency.
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FIG. 3. Three radial wave structures of �Bk (real: solid lines, imag: dashed lines) for the n=5

eigenmode for three di�erent plasma 
ow velocity and magnetopause boundary layer thickness

corresponding to three di�erent points on the curve shown in Fig. 2. Notice that the density

gradients and bulk 
ow strongly modify the mode structure. Note that n indicates the number of

nodes of the eigenfunction.

When the plasma 
ow is included (� = 0:05;MA = 0:1; �! = (�0:2; 0:7)) the real fre-

quency of the mode is some combination of an averaged k�V0 and !�. The real and imaginary

parts of the eigenfunction (the bottom panel in Fig. 3) are out of phase which indicates that

the wave phase velocity is in the 
ow direction. The solutions are skewed toward the bow

shock. To physically understand the origin of the relatively larger real frequency, we note

that the mode is most unstable when the arguments of the Z-functions (!�k �V0) is small

so that !�k �V0 ' 0 and the wave has a real frequency close to an average value of k �V0.

The behavior of the amplitude can be understood by considering j(! � k �V0)=kkvthj � 1.

In this case �i � �p�(�?T?=Tk)(!r � k �V0)=kkvth. The real part of the n=5 mode local
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wavevector varies between -5 and -10 over most of the domain so that k �V0=!r � �(2:5�5)

whereas �!r = �0:2 so that �i < 0. For unstable modes �r < 0, then � = ��i=2�r < 0 and

k0 > 0. Hence the mode has a spatial behavior, exp(�ik0x+ �k0x) so that the mode decays

with increasing values of x. Physically, because the mirror mode propagates in the same

direction as the 
ow but with a slower phase velocity, the mode will propagate toward the

bow shock direction in the plasma moving frame. As the mode propagates toward the bow

shock, its amplitude is enhanced by additional pressure anisotropy free energy and its energy

accumulates near the the bow shock boundary because of the re
ecting boundary condition

there.

VI. DISCUSSION OF RESULTS

Identi�cation of observed compressional waves in the magnetosheath has been somewhat

controversial. Indeed, many observations have found low frequency MHD waves with density

and magnetic �eld out of phase. These waves have been interpreted as being either slow

modes or mirror modes. Gleaves [2] observed compressional waves in the magnetosheath

near the magnetopause and identi�ed them as slow modes because those waves had a �nite

phase velocity toward the magnetopause in a di�erent direction from the 
ow velocity.

They dismissed those waves as being mirror modes based on the prediction of the uniform

plasma theory that mirror modes are purely growing waves in the plasma rest frame so

that they should be observed to propagate only with the 
ow direction in contrast to their

observations. However, it is commonly believed that strong Landau damping of the slow

mode in the magnetosheath inhibits its growth and therefore observations of waves with

antiphase correlation between density and magnetic �eld were identi�ed as drift mirror

modes [7,9,29,30]. More recently, the work of Song et al. [8] and Denton et al. [9] addressed

mode identi�cation in the magnetosheath and near the magnetopause. The analysis of

Denton et al. [9] identi�ed the bulk of the observed waves near the magnetopause to be mirror

modes. On the other hand, Song et al. [8] identi�ed waves throughout the magnetosheath
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and found that while fast magnetosonic and mirror mode waves appear to be dominant

in the middle magnetosheath, fast and slow magnetosonic waves are dominant near the

magnetopause. In their argument based on uniform plasma theory the essential measurement

that distinguishes between the mirror mode and slow magnetosonic waves is the so called

Doppler ratio which is used to determine whether the wave has a �nite phase velocity relative

to the bulk plasma 
ow. Using two satellites they were able to determine that compressional

waves observed just upstream of the magnetopause have antiphase relationship between

magnetic �eld and density. Because they stand in the 
ow and, therefore, have a �nite

phase velocity in the frame of the 
ow, they were identi�ed as slow modes.

The one-dimensional hybrid simulation of Omidi et al. [10] provides some insight as to

a possible resolution of this controversy. In that simulation, a fast shock wave propagates

away from a rotational discontinuity. Mirror mode waves arise in the wake of the shock

due to pressure anisotropy and are carried against the rotational discontinuity by plasma


ow. Near the region where the magnetic �eld increases, large amplitude waves appear to

stand between the rotational discontinuity and the region of low plasma-� referred to as a

magnetic boundary. The waves appeared to stand in the 
ow and had �nite real frequency

relative to the plasma 
ow. Omidi et al. [10] called the waves MIAOW (mirror and slow

mode) although it appears that the waves are simply compressional mirror modes that pile

up at the magnetopause boundary. In the simulation the MIAOW waves were found to only

occur for �nite normal magnetic �eld. Indeed, as stated in our Local Theory Section, the

mirror mode exists only for ! < kkvthi, and if there were no normal magnetic �eld component

k �B = 0, there is no instability.

Our calculations support the idea that compressional waves observed in the magne-

tosheath are global mirror modes. First, we demonstrated that diamagnetic drift e�ects

resulting from a realistic magnetopause pro�le produces a signi�cant real frequency in the

global mirror mode with an increase in amplitude near the magnetopause boundary. More-

over, there is a �nite real phase velocity directed toward the magnetopause. While the

observations of Song et al. [8] found the compressional wave phase velocity directed away
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from the magnetopause, the observations of Gleaves et al. [2] seemed to indicate that occa-

sionally the compressional waves do propagate toward the magnetopause. Secondly, when

the plasma 
ow is introduced, the global mirror mode develops a phase velocity in the di-

rection of the 
ow but is slower than the 
ow velocity. The result is that the wave would be

observed to propagate toward the bow shock in the frame of the moving plasma and would

have a �nite real frequency in the plasma frame. The results also would seem to indicate

that mirror mode wave activity should be stronger in the middle magnetosheath than near

the magnetopause boundary which is consistent with observations by Song et al. [8]. The

essential result of this work is that �nite real frequency is associated with the global mirror

mode due to nonlocal e�ects and the wave has a �nite phase velocity relative to the plasma


ow.

In general, the actual wave structure at the magnetopause will consist of a large number

of modes because the growth rates for the modes are approximately the same (see Fig. 2). It

is expected that �nite Larmor radius e�ects will suppress the modes with su�ciently large

kx and that there will be some range of kx with maximum growth. We expect that the

observations will consist of many such modes with di�erent kx. As a result, there will be

substantial beating between the waves leading to mirror mode wave structures with shorter

spatial scale which would be comparable with the scales that are observed. The theory

predicts a skew in the amplitude toward the magnetopause for small radial plasma 
ow

and a skew toward the magnetosheath for large radial plasma 
ow. These are predictions

from the theory that can be carefully compared with the observations in order to determine

whether further re�nements might be required for the theory.

The result of the one-dimensional hybrid simulation of Omidi et al. [10] di�ers from

our analysis in a number of ways. Their analysis, for example, does not include the e�ect

of diamagnetic drift because the wavevector, k, is only along r(P;B; n). Moreover, the

background model that they use is not in steady-state and therefore has time-dependent

boundary conditions. It seems that the real frequency of the MIAOW waves results from

the plasma 
ow e�ect because there is no diamagnetic drift e�ects in the simulation.
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Our one-dimensional analysis can still be improved by including coupling between the

compressional and transverse components of the perturbed magnetic �eld which becomes

essential near the shear Alfv�en and slow magnetosonic resonances. If the 
ow velocity is

large and/or the diamagnetic drift is small, Eq. (4) contains a singularity where � (x) =M2
A.

For an isotropic plasma, this singularity occur at MA = 1 and results because compressional

waves cannot propagate against bulk 
ow which exceeds the Alfv�en velocity. On the other

hand, in anisotropic plasmas with no 
ow, the same singularity occurs where � = 0 which

corresponds to the transition between a region unstable to mirror mode and a region stable

to mirror mode such as at the plasma depletion layer. If the density and pressure gradients

are su�ciently large, the singularity is resolved by diamagentic drift e�ects. Moreover, in

anisotropic plasmas this singularity also corresponds to the slow magnetosonic resonance

condition. Therefore, it is likely that coupling to the sound wave will be important near

that location. If the 
ow speed is su�ciently large, the resonance location will be shifted

upstream. When the 
ow speed becomes too large no solution is found when � = M2
A be-

cause the diamagnetic e�ects no longer resolve the singularity. Resolution of the singularity

involves coupling to the transverse magnetic �eld that we have neglected. In our future work

we will include full coupling to the transverse magnetic �eld which resolves the singularity.

VII. SUMMARY

In this paper we have presented an eigenmode analysis of the global mirror mode at

the magnetopause using the kinetic-MHD model which accounts for both kinetic e�ects and

global e�ects due to background gradients. The analysis demonstrates that:

� magnetopause gradients and plasma 
ow lead to a substantial real part of the eigen-

frequency for the global mirror modes which is on the order of a combination of the

Doppler shift frequency associated with plasma 
ow and diamagnetic drift frequencies,

� pressure and density gradients at the magnetopause modify the wave structure because

of diamagnetic drift e�ects. The real frequency associated with the diamagnetic drift
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frequency provides a wave phase velocity in the direction of the magnetopause so that

wave energy accumulates against the magnetopause boundary and the amplitude is

skewed in that direction.

� plasma 
ow also gives rise to a real phase velocity, but the phase velocity is smaller

than the 
ow velocity. As a result, the wave amplitude is increased in the wake of

the plasma 
ow and piles up against the bow shock boundary and is skewed in that

direction.

� boundary conditions are important because they impose restrictions that determine

the global solution far away from the boundary and determine how the waves propagate

within the region of instability,

� the kinetic-MHD formalism is useful when it is important to consider both global scale

gradients and kinetic e�ects.

One obvious direction for future consideration is an extension to obtain mirror mode

solutions based on a two-dimensional magnetosheath-magnetopause con�guration which in-

cludes the two-dimensional plasma 
ow and the e�ects of curvature. Another important

area for further consideration is coupling between the compressional and transverse compo-

nents of the perturbed magnetic �eld which becomes essential near the shear Alfv�en and

slow magnetosonic resonances. Because these modes have a real frequency, they can couple

strongly with the kinetic Alfv�en wave near the location where the real frequency matches

the local shear Alfv�en resonance frequency which will occur if the background magnetic �eld

rotates. Such coupling could lead to enhanced particle transport across the magnetopause

boundary layer.

APPENDIX: INTEGRALS OVER PRODUCTS OF BESSEL FUNCTIONS

In the kinetic-MHD equations, the �elds are multiplied by J0 and J1 so that integrals

over the product J0J1 are frequently encountered. Integrals of this type may be evaluated
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through di�erentiation on the well known integral 6.633.1 from [31]

I1(�; �) �
Z
1

0
exp(���2)[J0(��)]2�d� =

1

2�
exp(��2=2�)I0(�2=2�) (A1)

where I0 is the modi�ed Bessel function.

Kinetic e�ects for the core plasma involve two integrals

I2 �
Z
1

0
exp(��2)J0(��)J1(��)�2d� (A2)

I3 �
Z
1

0
exp(��2)J0(��)J1(��)�4d� (A3)

I5 �
Z
1

0
exp(��2)J0(��)J1(��)�6d� (A4)

Using the relationship

@J0(z)

@z
= �J1(z) (A5)

we �nd that

I2 = �1

2

@I1
@�

�����
�=1

(A6)

I3 =
1

2

@2I1
@�@�

�����
�=1

(A7)

I5 = �1

2

@3I1
@�@�2

�����
�=1

: (A8)

We �nd through di�erentiation using the rule

2
@In(z)

@z
= In�1(z) + In+1(z) (A9)

and

2n

z
In(z) = In�1(z)� In+1(z) (A10)

and with the auxiliary de�nition

�n(z) = exp(�z)In(z) (A11)

that
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I2 =
�

4
[�0(�

2=2) � �1(�
2=2)] (A12)

I3 =
�

2

n
[1� �2=2]�0 � [1� �2]�1=2

o
(A13)

I5 =
3�

2

n
[1� 11�2=12 + �4=6]�0 � [1� 9�2=4 + �4=2]�1=3

o
(A14)

The limiting forms of these expressions are of interest. The power series representations

(in �) of these functions is

I2 =
�

4
(1 � 3�2=4 + 5�4=16 + ::: (A15)

I3 =
�

2
(1 � 9�2=8 + 5�4=8 + ::: (A16)

I5 =
3�

2
(1� 3�2=2 + 25�4=24 + ::: (A17)

The asymptotic expansions for large � are

I2 �
1

4
p
��2

(A18)

I3 � �
7

8
p
��2

(A19)

I5 �
3

16
p
��2

(A20)
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